172 research outputs found

    Hierarchical tapered bar elements undergoing axial deformation

    Get PDF
    A method is described to model the dynamics of tapered axial bars of various cross sections based on the well-known Craig/Bampton component mode synthesis technique. This element is formed in terms of the static constraint modes and interface restrained normal modes. This is in contrast with the finite elements as implemented in NASTRAN where the interface restrained normal modes are neglected. These normal modes are in terms of Bessel functions. Restoration of a few of these modes leads to higher accuracy with fewer generalized coordinates. The proposed models are hierarchical so that all lower order element matrices are embedded in higher order element matrices. The advantages of this formulation compared to standard NASTRAN truss element formulation are demonstrated through simple numerical examples

    Random vibration analysis of space flight hardware using NASTRAN

    Get PDF
    During liftoff and ascent flight phases, the Space Transportation System (STS) and payloads are exposed to the random acoustic environment produced by engine exhaust plumes and aerodynamic disturbances. The analysis of payloads for randomly fluctuating loads is usually carried out using the Miles' relationship. This approximation technique computes an equivalent load factor as a function of the natural frequency of the structure, the power spectral density of the excitation, and the magnification factor at resonance. Due to the assumptions inherent in Miles' equation, random load factors are often over-estimated by this approach. In such cases, the estimates can be refined using alternate techniques such as time domain simulations or frequency domain spectral analysis. Described here is the use of NASTRAN to compute more realistic random load factors through spectral analysis. The procedure is illustrated using Spacelab Life Sciences (SLS-1) payloads and certain unique features of this problem are described. The solutions are compared with Miles' results in order to establish trends at over or under prediction

    Transient loads analysis for space flight applications

    Get PDF
    A significant part of the flight readiness verification process involves transient analysis of the coupled Shuttle-payload system to determine the low frequency transient loads. This paper describes a methodology for transient loads analysis and its implementation for the Spacelab Life Sciences Mission. The analysis is carried out using two major software tools - NASTRAN and an external FORTRAN code called EZTRAN. This approach is adopted to overcome some of the limitations of NASTRAN's standard transient analysis capabilities. The method uses Data Recovery Matrices (DRM) to improve computational efficiency. The mode acceleration method is fully implemented in the DRM formulation to recover accurate displacements, stresses, and forces. The advantages of the method are demonstrated through a numerical example

    Seasonal dependence of the "forecast parameter" based on the EIA characteristics for the prediction of Equatorial Spread F (ESF)

    Get PDF
    In an earlier study, Thampi et al. (2006) have shown that the strength and asymmetry of Equatorial Ionization Anomaly (EIA), obtained well ahead of the onset time of Equatorial Spread F (ESF) have a definite role on the subsequent ESF activity, and a new "forecast parameter" has been identified for the prediction of ESF. This paper presents the observations of EIA strength and asymmetry from the Indian longitudes during the period from August 2005-March 2007. These observations are made using the line of sight Total Electron Content (TEC) measured by a ground-based beacon receiver located at Trivandrum (8.5° N, 77° E, 0.5° N dip lat) in India. It is seen that the seasonal variability of EIA strength and asymmetry are manifested in the latitudinal gradients obtained using the relative TEC measurements. As a consequence, the "forecast parameter" also displays a definite seasonal pattern. The seasonal variability of the EIA strength and asymmetry, and the "forecast parameter" are discussed in the present paper and a critical value for has been identified for each month/season. The likely "skill factor" of the new parameter is assessed using the data for a total of 122 days, and it is seen that when the estimated value of the "forecast parameter" exceeds the critical value, the ESF is seen to occur on more than 95% of cases

    Carbon Nanotubes Generated from Polyphenyl Acetylene

    Get PDF
    The carbonization of polyphenyl acetylene in alumina matrix yields uniform, cylindrical, monodisperse carbon nanotubes with outer diameter almost equal to pore diameter of the alumina membrane used. The electrochemical characteristics reveal that the charge transfer at the composite electrode based on carbon nanotube might be higher compared to that of planar graphite, glassy carbon and composite electrode based on commercially available Vulcan XC72R carbon. Pt-Ru nanoparticles are highly dispersed inside the tube with an average particle size of 1.7 nm as revealed by HR-TEM images

    MENCA experiment aboard India’s Mars Orbiter Mission

    Get PDF
    The Mars Exospheric Neutral Composition Analyser (MENCA) aboard the Indian Mars Orbiter Mission (MOM) is a quadrupole mass spectrometer-based experiment. Making use of the highly elliptical and low inclination (~150°) orbit of MOM, MENCA will conduct in situ measurements of the composition and radial distribution of the Martian neutral exosphere in the 1–300 amu mass range in the equatorial and low latitudes of Mars. The functionality of MENCA has been tested during the Earth-bound and heliocentric phases of MOM before its operation in the Martian orbit. This article describes the scientific objectives, instrument details, design and development, test and evaluation, and calibration of the MENCA instrument

    Interaction of C-Terminal Truncated Human αA-Crystallins with Target Proteins

    Get PDF
    Significant portion of alphaA-crystallin in human lenses exists as C-terminal residues cleaved at residues 172, 168, and 162. Chaperone activity, determined with alcohol dehydrogenase (ADH) and betaL-crystallin as target proteins, was increased in alphaA(1-172) and decreased in alphaA(1-168) and alphaA(1-162). The purpose of this study was to show whether the absence of the C-terminal residues influences protein-protein interactions with target proteins.Our hypothesis is that the chaperone-target protein binding kinetics, otherwise termed subunit exchange rates, are expected to reflect the changes in chaperone activity. To study this, we have relied on fluorescence resonance energy transfer (FRET) utilizing amine specific and cysteine specific fluorescent probes. The subunit exchange rate (k) for ADH and alphaA(1-172) was nearly the same as that of ADH and alphaA-wt, alphaA(1-168) had lower and alphaA(1-162) had the lowest k values. When betaL-crystallin was used as the target protein, alphaA(1-172) had slightly higher k value than alphaA-wt and alphaA(1-168) and alphaA(1-162) had lower k values. As expected from earlier studies, the chaperone activity of alphaA(1-172) was slightly better than that of alphaA-wt, the chaperone activity of alphaA(1-168) was similar to that of alphaA-wt and alphaA(1-162) had substantially decreased chaperone activity.Cleavage of eleven C-terminal residues including Arg-163 and the C-terminal flexible arm significantly affects the interaction with target proteins. The predominantly hydrophilic flexible arm appears to be needed to keep the chaperone-target protein complex soluble

    Multiple Aggregates and Aggresomes of C-Terminal Truncated Human αA-Crystallins in Mammalian Cells and Protection by αB-Crystallin

    Get PDF
    Cleavage of 11 (αA162), 5 (αA168) and 1 (αA172) residues from the C-terminus of αA-crystallin creates structurally and functionally different proteins. The formation of these post-translationally modified αA-crystallins is enhanced in diabetes. In the present study, the fate of the truncated αA-crystallins expressed in living mammalian cells in the presence and absence of native αA- or αB-crystallin has been studied by laser scanning confocal microscopy (LSM).YFP tagged αAwt, αA162, αA168 and αA172, were individually transfected or co-transfected with CFP tagged αAwt or αBwt, expressed in HeLa cells and studied by LSM. Difference in protein aggregation was not caused by different level of α-crystallin expression because Western blotting results showed nearly same level of expression of the various α-crystallins. The FRET-acceptor photo-bleaching protocol was followed to study in situ protein-protein interaction. αA172 interacted with αAwt and αBwt better than αA168 and αA162, interaction of αBwt being two-fold stronger than that of αAwt. Furthermore, aggresomes were detected in cells individually expressing αA162 and αA168 constructs and co-expression with αBwt significantly sequestered the aggresomes. There was no sequestration of aggresomes with αAwt co-expression with the truncated constructs, αA162 and αA168. Double immunocytochemistry technique was used for co-localization of γ-tubulin with αA-crystallin to demonstrate the perinuclear aggregates were aggresomes.αA172 showed the strongest interaction with both αAwt and αBwt. Native αB-crystallin provided protection to partially unfolded truncated αA-crystallins whereas native αA-crystallin did not. Aggresomes were detected in cells expressing αA162 and αA168 and αBwt co-expression with these constructs diminished the aggresome formation. Co-localization of γ-tubulin in perinuclear aggregates validates for aggresomes
    • …
    corecore